2019 CONSUMER CONFIDENCE REPORT Report Covers Calendar Year: January 1, 2019 - December 31, 2019 # REPORTE ANUAL SOBRE LA CALIDAD DEL AGUA DEL 2019* El reporte abarca del día 1 de Enero al 31 de Diciembre del 2019 # **Public Water System (PWS) Information** | PWS Name: | City c | of Nogales | PV | VS ID# | | AZ04-12004 | Owner | ·/C | Operator | Name: | City of Nogales | |--|--|-------------------|------|----------|----|---|------------|-----|------------|-----------|------------------------------------| | Utilities Directo | or: A | Alejandro Barcena | as | | Co | ontact Person a | nd Title: | | Ruben A | Artana Ac | dmin Service Coordinator | | Telephone # | (520) | 287-6571 | | Fax # | | (520) 287-8352 | | Е | -mail | rartana | @nogalesaz.gov | | The sources of o | drinkin | ig water (both ta | p ar | nd bottl | ed | water) include | rivers, la | ak | es, streai | ms, pond | s, reservoirs, springs, and wells. | | As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. | | | | | | human activity.
Jount of certain contaminants in | | | | | | | Our water sour | source(s): Ground Water / Upper Santa Cruz River / Potrero Creek | | | | | | | | | | | * Este reporte contiene información muy importante sobre la calidad del agua. Es muy importante que busque a una persona que pueda ayudarle a traducirlo al español o se puede comunicar al (520) 285-5754 para obtener ayuda sobre este reporte en español. ### **Drinking Water Contaminants** <u>Microbial contaminants</u>, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. <u>Inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. <u>Pesticides and herbicides</u> that may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses. <u>Organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic systems. Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. ## **Vulnerable Population** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants call the EPA *Safe Drinking Water Hotline* at 1-800-426-4791. #### Source Water Assessment Based on the information currently available on the hydrogeologic settings and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water system, the Arizona Department of Environmental Quality (ADEQ) has given a high risk designation for the degree to which this public water system drinking water source(s) are protected. A designation of high risk indicates there may be additional source water protection measures which can be implemented on the local level. This does not imply that the source water is contaminated nor does it mean that contamination is imminent. Rather, it simply states that land use activities or hydrogeologic conditions exist that make the source water susceptible to possible future contamination. #### **Definitions** <u>AL = Action Level</u> - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements. <u>MCL = Maximum Contaminant Level</u> - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. <u>MCLG = Maximum Contaminant Level Goal</u> - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MFL = Million fibers per liter. MRDL = Maximum Residual Disinfectant Level. MRDLG = Maximum Residual Disinfectant Level Goal. MREM = Millirems per year – a measure of radiation absorbed by the body. NA = Not Applicable, sampling was not completed by regulation or was not required. $\underline{ND} = Not Detectable$, results are below the laboratory sample detection limit. NTU = Nephelometric Turbidity Units, a measure of water clarity. <u>PCi/L = Picocuries per liter</u> - picocuries per liter is a measure of the radioactivity in water. <u>PPM = Parts per million</u> or Milligrams per liter (mg/L). PPB = Parts per billion or Micrograms per liter (µg/L). PPT = Parts per trillion or Nanograms per liter. PPQ = Parts per quadrillion or Picograms per liter. ppm x 1000 = ppb ppb x 1000 = ppt ppt x 1000 = ppq <u>TT = Treatment Technique</u> - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. ### **Health Effects Language** **Nitrate** in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. "High nitrate levels in drinking water can cause blue baby syndrome". Nitrate levels may rise quickly for short periods-of-time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider. If arsenic is less than or equal to the MCL, your drinking water meets ADEQ (Arizona Department of Environmental Quality) and EPA's standards. ADEQ and EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. ADEQ and EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. #### **Lead Information Statement:** Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. *City Of Nogales* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. **Water Quality Data** | Microbiological (RTCR) | Violation
Y or N | Number of
Positive
Samples | Positive Sample(s)
Month & Year | MCL | MCLG | Samples
per Month
or Year | Likely Source of
Contamination | |---|---------------------|----------------------------------|------------------------------------|-----|------|---------------------------------|-----------------------------------| | Total Coliform | N | 0 | 0 | 0 | 0 | 25/month
300/year | Human and animal fecal waste | | Fecal Indicator
(coliphage, enterococci
and/or E. coli) | N | 0 | 0 | 0 | 0 | 25/month
300/year | Human and
animal fecal waste | | Disinfectants | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MRDL | MRDLG | Samples
per Month
or Year | Likely Source of Contamination | |---------------------------------------|---------------------|---|-------------------------------|----------|-----------|---------------------------------|---| | Chlorine (ppm) | N | 0.37 | .33 – .51 | MRDL = 4 | MRDLG = 0 | 25/month
300/year | Water additive
used to control
microbes | | Disinfection By-Products | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MRDL | MCLG | Sample
Month &
Year | Likely Source of
Contamination | | Total Trihalomethanes (ppb)
(TTHM) | N | 15 | 3.2- 18ppb | 80ppb | N/A | 2019 | Byproduct of drinking water disinfection | | Lead & Copper | Violation
Y or N | 90 th Percentile
<u>AND</u> Number
of Samples
Over the AL | Range of All Samples
(L-H) | AL | ALG | Year
Sample
Dates | Likely Source of
Contamination | | Copper (ppm) | N | .20
0 samples | .11 – .44 | 1.3 | 1.3 | 2018 | Corrosion of
household
plumbing systems;
erosion of natural
deposits | | Lead (ppb) | N | <1ppb
0 samples | <.50 – .34 | 15 | 0 | 2018 | Corrosion of
household
plumbing systems;
erosion of natural
deposits | | Radionuclides | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MCL | MCLG | Year
Sample
Dates | Likely Source of
Contamination | | Beta / photon
emitters (mrem/yr) | N | < 4.0 | < 4.0 - < 4.0 | 4 | 0 | 2018 | Decay of natural
and man-made
deposits | | Alpha emitters (pCi/L) | N | .9 pCi/L | .50 – .90 | 15 | 0 | 2018 | Erosion of natural deposits | | Combined Radium 226 & 228 (pCi/L) | N | < 0.7 | < 0.7 - < 0.7 | 5 | 0 | 2018 | Erosion of natural deposits | | Uranium (ug/L) | N | 5 | 2.5 - 5 | 30 | 0 | 2018 | Erosion of natural deposits | | Inorganic Chemicals (IOC) | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MCL | MCLG | Year
Sample
Dates | Likely Source of
Contamination | | Antimony (ppb) | N | <.5 | < .5 - < .5 | 6 | 6 | 2018 | Discharge from petroleum refineries; fire retardants; ceramics, electronics and solder | | Arsenic (ppb) | N | 5 ppb | Nd-8.5 ppb | 10 | 0 | 2019 | Erosion of natural
deposits, runoff
from orchards,
runoff from glass
and electronics
production wastes | | Asbestos (MFL) | N | 0.05MFL | <.2 – 23.5 | 7 | 7 | 2019 | Decay of asbestos
cement water
mains; Erosion of
natural deposits | |-----------------|---|---------|---------------|-----|-----|------|---| | Barium (ppm) | N | < .50 | < .50 - < .50 | 2 | 2 | 2018 | Discharge of
drilling wastes;
discharge from
metal refineries;
Erosion of natural
deposits | | Beryllium (ppb) | N | < .25 | < .25 - < .25 | 4 | 4 | 2018 | Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries | | Cadmium (ppb) | N | < .25 | < .25 - < .25 | 5 | 5 | 2018 | Corrosion of galvanized pipes; natural deposits; metal refineries; runoff from waste batteries and paints | | Chromium (ppb) | N | < .5 | < .5 - < .5 | 100 | 100 | 2018 | Discharge from
steel and pulp
mills; Erosion of
natural deposits | | Cyanide (ppb) | N | < .10 | < .10 - < .10 | 200 | 200 | 2018 | Discharge from
steel/metal
factories;
Discharge from
plastic and
fertilizer factories | | Fluoride (ppm) | N | .51ppm | < .50 – .51 | 4 | 4 | 2018 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | Mercury (ppb) | N | < .10 | < .10 - < .10 | 2 | 2 | 2018 | Erosion of natural
deposits;
Discharge from
refineries and
factories; Runoff
from landfills and
cropland. | | Nitrate (ppm) | N | 2ppm | .7-2ppm | 10 | 10 | 2019 | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage; erosion of
natural deposits | | Nitrite (ppm) | N | < .20 | < .20 - < .20 | 1 | 1 | 2018 | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage; erosion of
natural deposits | | Selenium (ppb) | N | < .25 | < .25 - < .25 | 50 | 50 | 2018 | Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines | |--------------------------------------|---------------------|------------------------------------|-------------------------------|-----|------|-------------------------|--| | Sodium (ppm) | N | 27 | 26 – 27 | N/A | N/A | 2018 | Erosion of natural deposits | | Thallium (ppb) | N | <.5 | <.5 - <.5 | 2 | 0.5 | 2018 | Leaching from
ore-processing
sites; discharge
from
electronics,
glass, and drug | | Synthetic Organic
Chemicals (SOC) | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MCL | MCLG | Year
Sample
Dates | Likely Source of
Contamination | | 2,4-D (ppb) | N | < .245 | < .01 - < .39 | 70 | 70 | 2018 | Runoff from
herbicide used on
row crops | | Alachlor (ppb) | N | <.2 | < .2 - < .2 | 2 | 0 | 2018 | Runoff from
herbicide used on
row crops | | Atrazine (ppb) | N | <.1 | <.1-<.1 | 3 | 3 | 2018 | Runoff from
herbicide used on
row crops | | Benzo (a) pyrene (PAH) (mg/L) | N | < .02 | <.02 - <.02 | 200 | 0 | 2018 | Leaching from
linings of water
storage tanks and
distribution lines | | Carbofuran (ppb) | N | < .9 | < .9 - < .9 | 40 | 40 | 2018 | Leaching of soil
fumigant used on
rice and alfalfa | | Chlordane (ppb) | N | <.2 | <.2 - <.2 | 2 | 0 | 2018 | Residue of banned termiticide | | Dalapon (ppb) | N | < .245 | < .1 - < .39 | 200 | 200 | 2018 | Runoff from
herbicide used on
rights of way | | Dibromochloropropane (ppt) | N | < .04 | <.08 - <.08 | 200 | 0 | 2018 | Runoff/leaching
from soil fumigant
used on soybeans,
cotton,
pineapples,
and orchards | | Dinoseb (ppb) | N | < .485 | < .2 - < .77 | 7 | 7 | 2018 | Runoff from
herbicide used on
soybeans and
vegetables | | Diquat (ppb) | N | < .4 | < .4 - < .4 | 20 | 20 | 2018 | Runoff from herbicide use | | Dioxin [2,3,7,8-TCDD] (ppq) | N | < 5 x 10(-9) | <5x10(-9)-<4.8x10(-9) | 30 | 0 | 2018 | Emissions from waste incineration and other combustion; discharge from chemical factories | | Endothall (ppb) | N | < .9 | < .9 - < .9 | 100 | 100 | 2018 | Runoff from
herbicide use | | Endrin (ppb) | N | < .01 | < .01-< .01 | 2 | 2 | 2018 | Residue of banned insecticide | | Ethylene dibromide (ppt) | N | < .09 | <.01 - <.08 | 50 | 0 | 2018 | Discharge from petroleum refineries | |-------------------------------------|---------------------|------------------------------------|-------------------------------|-----|------|-------------------------|---| | Glyphosate (ppb) | N | <.6 | < .6 - < .6 | 700 | 700 | 2018 | Runoff from herbicide use | | Heptachlor (ppt) | N | < .4 | < .04-< .04 | 400 | 0 | 2018 | Residue of banned temiticide | | Hexachlorobenzene (ppb) | N | <.1 | <.1-<.1 | 1 | 0 | 2018 | Discharge from
metal refineries
and agricultural
chemical factories | | Lindane (ppt) | N | < .02 | < .02 -< .02 | 200 | 200 | 2018 | Runoff/leaching
from insecticide
used on cattle,
lumber, gardens | | Methoxychlor (ppb) | N | <.1 | <.1-<.1 | 40 | 40 | 2018 | Runoff/leaching
from insecticide
used on fruits,
vegetables, alfalfa,
livestock | | Oxamyl [Vydate] (ppb) | N | <.2 | < .2 - < .2 | 200 | 200 | 2018 | Runoff/leaching
from insecticide
used on apples,
potatoes and
tomatoes | | Pentachlorophenol (ppb) | N | < .095 | <.04 - <.15 | 1 | 0 | 2018 | Discharge from wood preserving factories | | Picloram (ppb) | N | < .245 | < .1 - < .39 | 500 | 500 | 2018 | Herbicide runoff | | Simazine (ppb) | N | < .07 | <.07 - <.07 | 4 | 4 | 2018 | Herbicide runoff | | Toxaphene (ppb) | N | < .8 | <.6 - <.1 | 3 | 0 | 2018 | Runoff/leaching
from insecticide
used on cotton
and cattle | | Volatile Organic
Chemicals (VOC) | Violation
Y or N | Running
Annual
Average (RAA) | Range of All Samples
(L-H) | MCL | MCLG | Year
Sample
Dates | Likely Source of
Contamination | | Benzene (ppb) | N | < .5 | < .5 - < .5 | 5 | 0 | 2018 | Discharge from
factories; leaching
from gas storage
tanks and landfills | | Chlorobenzene (ppb) | N | < .5 | < .5 - < .5 | 100 | 100 | 2018 | Discharge from
chemical and
agricultural
chemical factories | | Dichloromethane (ppb) | N | < .5 | < .5 - < .5 | 500 | 0 | 2018 | Discharge from pharmaceutical and chemical factories | | Ethylbenzene (ppb) | N | < .5 | < .5 - < .5 | 700 | 700 | 2018 | Discharge from petroleum refineries | | Styrene (ppb) | N | < .5 | < .5 - < .5 | 100 | 100 | 2018 | Discharge from
rubber and plastic
factories; leaching
from landfills | | Tetrachloroethylene (ppb) | N | < .5 | < .5 - < .5 | 5 | 0 | 2018 | Discharge from factories and dry cleaners | | Trichloroethylene (ppb) | N | < .5 | < .5 - < .5 | 5 | 0 | 2018 | Discharge from
metal degreasing
sites and other
factories | | Toluene (ppm) | N | < .5 | < .5 - < .5 | 1 | 1 | 2018 | Discharge from petroleum factories | |----------------------|---|-------|---------------|----|----|------|---| | Vinyl Chloride (ppb) | N | < .5 | < .5 - < .5 | 2 | 0 | 2018 | Leaching from PVC piping; discharge from chemical factories | | Xylenes (ppm) | N | < .15 | < .15 - < .15 | 10 | 10 | 2018 | Discharge from petroleum or chemical factories | Water Quality Table - Unregulated Contaminant Monitoring Rule | Metals | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source of Contamination | | |--|-------------------|---------|---------------------------------------|-----|--|--| | Germanium (ppt) | Y | 737 | 690-830 | 300 | Naturally-occurring element; commercially available in combination with other elements and minerals; a byproduct of zinc ore processing; used in infrared optics, fiber-optic systems, electronics and solar applications | | | Manganese (ppt) | N | 1.56 | 0.40 – 3.13 | 400 | Naturally-occurring element; commercially available in combination with other elements and minerals; used in steel production, fertilizer, batteries and fireworks; drinking water and wastewater treatment chemical; essential nutrient | | | Pesticides | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source of Contamination | | | Alpha-hexachlorocyclohexane (ppt) | N | <.1 | <.1 - <.1 | 10 | Component of benzene hexachloride (BHC); formerly used as an insecticide | | | Chlorpyrifos (ppt) | N | <.3 | <.3 - <.3 | 30 | Organophosphate; used as an insecticide, acaricide and miticide | | | Dimethipin (ppt) | N | <.2 | <.2 - <.2 | 200 | Used as an herbicide and plant growth regulator | | | Ethoprop (ppt) | N | <.3 | <.3 - <.3 | 30 | Used as an insecticide | | | Oxyfluorfen (ppt) | N | <.5 | <.5 - <.5 | 50 | Used as an herbicide | | | Profenofos (ppt) | N | <.3 | <.3 - <.3 | 300 | Used as an insecticide and acaricide | | | Tebuconazole (ppt) | N | <.2 | <.2 - <.2 | 200 | Used as a fungicide | | | Total permethrin (cis- & trans-) (ppt) | N | <.4 | <.4 - <.4 | 40 | Used as an insecticide | | | Pesticides Manufacturing By-Product | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source of Contamination | | | Tribufos (ppt) | N | <.7 | <.7 - <.7 | 700 | Used as an insecticide and cotton defoliant Water additive used to control microbes | | | Alcohols | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source of Contamination | | | 1-butanol (ppb) | N | <2 | <2 - <2 | 2 | Used as a solvent, food additive and in production of other chemicals | | | 2-methoxyethanol (ppt) | N | <.40 | <.40 - <.40 | 400 | Used in a number of consumer products, such as synthetic cosmetics, perfumes, fragrances, hair preparations and skin lotions | | | 2-propen-1-ol (ppt) | N | <.50 | <.50 - <.50 | 500 | Used in the production flavorings, perfumes and other chemicals | | | Semivolatile Chemicals | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source of Contamination | | | Butylated hydroxyanisole (ppt) | N | <.3 | <.3 - <.3 | 30 | Used as a food additive (antioxidant) | | | O-toluidine (ppt) | N | <.07 | <.07 - <.07 | 7 | Used in the production of dyes, rubber, pharmaceuticals and pesticides | | | Quinolone (ppt) | N | <.2 | <.2 - <.2 | 20 | Used as a pharmaceutical (anti-malarial) and flavoring agent; produced as a chemical intermediate; component of coal | | | Disinfection By-Products | Detected
(Y/N) | Average | Range of All
Samples
(Low-High) | MRL | Likely Source Of
Contamination | |------------------------------------|-------------------|---------|---------------------------------------|-----|--| | Haloacetic Acids (HAA6BR)
(ppb) | Υ | .9 | ND – 2.12 | NA | Byproduct of drinking water disinfection | | Haloacetic Acids (HAA9)(ppb) | Υ | 1.4 | .54-3.5 | NA | Byproduct of drinking water disinfection | | Haloacetic Acids (HAA9)(ppb) | Υ | 1.4 | .54-3.19 | NA | Byproduct of drinking water disinfection | | Bromide (ppb) | Υ | 54.6 | 22-77.9 | NA | Byproduct of drinking water disinfection | Violation Summary (for MCL, MRDL, AL, TT, or Monitoring & Reporting Requirement) | Violation Type | Explanation | Time Period | Corrective Action | | | | | | | |--------------------|------------------------------------|---------------------------|--|--|--|--|--|--|--| | Missing Monitoring | Disinfection by product Monitoring | 4 th Qtr. 2019 | Monitoring The following qtr | | | | | | | | Late Reporting | Disinfection by product | | Submitted report after the due date | | | | | | | | Late Reporting | Submitted arsenic results late | 2 nd Qtr 2019 | Submitted arsenic results after the due date | | | | | | |